The generator matrix 1 0 1 1 1 X^2+X+2 1 1 0 1 X^2+X+2 1 1 1 1 2 1 X+2 1 1 0 1 X+2 1 1 1 1 1 X^2+2 1 X 1 X^2 1 X^2+X+2 1 1 1 1 1 X^2 X^2+X+2 1 1 0 1 1 1 1 1 X 1 X^2+2 1 1 1 1 1 0 1 X+1 X^2+X+2 X^2+1 1 X^2+3 0 1 X^2+X+2 1 X+1 3 X^2+X+1 2 1 X+2 1 X^2+X+3 0 1 X+2 1 1 X^2+X+3 X^2+3 X+1 X^2 1 X^2+X+1 1 X^2 1 1 1 X X^2+X+1 1 X+3 X X 1 X+1 3 1 3 X+2 3 X^2+X X+2 X+2 X^2+1 1 3 X^2+X+3 X^2+X+1 X+2 0 0 0 X^2 0 0 0 0 X^2 X^2+2 X^2+2 X^2 X^2+2 2 X^2 X^2+2 X^2 2 2 X^2 2 2 X^2 X^2+2 2 X^2+2 X^2 0 0 X^2 2 X^2+2 2 2 X^2 0 X^2 2 X^2 2 X^2 0 X^2+2 0 X^2+2 0 X^2+2 X^2+2 2 0 0 2 X^2+2 2 X^2+2 0 0 X^2+2 0 0 0 0 X^2+2 2 X^2+2 X^2 X^2 X^2+2 2 0 X^2+2 0 2 0 2 2 2 X^2+2 X^2+2 X^2+2 X^2 X^2+2 X^2 X^2 0 2 X^2+2 X^2 X^2 0 2 X^2 X^2+2 2 0 2 2 X^2+2 X^2+2 X^2+2 2 0 X^2 2 X^2+2 0 X^2+2 2 X^2 X^2+2 0 2 0 X^2+2 X^2 X^2+2 2 generates a code of length 58 over Z4[X]/(X^3+2,2X) who´s minimum homogenous weight is 53. Homogenous weight enumerator: w(x)=1x^0+54x^53+245x^54+462x^55+525x^56+544x^57+544x^58+496x^59+528x^60+396x^61+132x^62+82x^63+62x^64+12x^65+5x^66+2x^68+2x^69+2x^72+1x^78+1x^82 The gray image is a code over GF(2) with n=464, k=12 and d=212. This code was found by Heurico 1.16 in 0.297 seconds.